GraphRAG: RAG์™€ Knowledge Graph์˜ ๋งŒ๋‚จ

2025. 4. 18. 00:37

๐Ÿ–‡๏ธ GraphRAG์˜ ๋“ฑ์žฅ ๋ฐฐ๊ฒฝ

๋ฐ”์•ผํ๋กœ ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ, LLM์ด ๋“ฑ์žฅํ•˜์—ฌ ์šฐ๋ฆฌ์˜ ์ผ์ƒ์ด ํฌ๊ฒŒ ๋ณ€ํ™”ํ•˜์˜€๋‹ค. GPT๋‚˜ LLaMA์™€ ๊ฐ™์€ ๋ชจ๋ธ๋“ค์€ ์‚ฌ์šฉ์ž์˜ ์ฟผ๋ฆฌ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๋†€๋ผ์šด ์ˆ˜์ค€์˜ ์‘๋‹ต์„ ์ƒ์„ฑํ•˜๋ฉฐ ๊ฐ•๋ ฅํ•œ ํผํฌ๋จผ์Šค๋ฅผ ๋ณด์ด์ง€๋งŒ, ๊ทธ์™€ ๋™์‹œ์— ์น˜๋ช…์ ์ธ ํ•œ๊ณ„๋„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ๋ฐ”๋กœ LLM์ด ํ•™์Šต ์ดํ›„ ์—…๋ฐ์ดํŠธ๋œ ์ตœ์‹  ์ •๋ณด๋“ค์— ๋Œ€ํ•ด ๋ฌด์ง€ํ•˜๊ณ , ํ•™์Šต๋˜์ง€ ์•Š์€ ํŠน์ • ๋„๋ฉ”์ธ ์ง€์‹์— ๋Œ€ํ•ด ์ œ๋Œ€๋กœ ์‘๋‹ตํ•˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋Š” ์ข…์ข… Hallucination์ด๋ผ๋Š” ํ˜•ํƒœ๋กœ ๋‚˜ํƒ€๋‚˜๋ฉฐ, ๊ทธ๋Ÿด๋“ฏํ•˜์ง€๋งŒ ์‚ฌ์‹ค๊ณผ ๋‹ค๋ฅธ ๋‹ต๋ณ€์„ ์ƒ์„ฑํ•˜๊ฒŒ ๋œ๋‹ค.

 

์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ๋ณด์™„ํ•˜๊ธฐ ์œ„ํ•ด ๋“ฑ์žฅํ•œ ๊ฒƒ์ด RAG(Retrieval-Augmented Generation)์ด๋‹ค. RAG์˜ ์ฃผ์š” ์•„์ด๋””์–ด๋Š” '์ง€์‹ ๊ฒ€์ƒ‰'๊ณผ LLM์˜ ๊ฒฐํ•ฉ์ด๋‹ค. ์ตœ์‹  ์ •๋ณด ๋“ฑ์„ ํฌํ•จํ•œ ์™ธ๋ถ€ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค๋ฅผ ๋ณ„๋„๋กœ ๋‘๊ณ , ์‚ฌ์šฉ์ž๋กœ๋ถ€ํ„ฐ ์งˆ๋ฌธ์ด ๋“ค์–ด์˜ค๋ฉด ์™ธ๋ถ€ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค๋กœ๋ถ€ํ„ฐ ์—ฐ๊ด€์„ฑ์ด ๋†’์€ ์ •๋ณด๋ฅผ ๊ฒ€์ƒ‰(Retrieval)ํ•œ๋‹ค. ์ดํ›„ LLM์€ ์ด ์ง€์‹์„ ํ™œ์šฉํ•˜์—ฌ ์‘๋‹ต์„ ์ƒ์„ฑ(Generation)ํ•œ๋‹ค. ์ด ์™ธ๋ถ€ ์ง€์‹์€ ์ผ๋ฐ˜์ ์œผ๋กœ ๋ฒกํ„ฐ๋กœ ๋ณ€ํ™˜๋˜์–ด ์ €์žฅ๋˜๋ฉฐ, ์‚ฌ์šฉ์ž ์ฟผ๋ฆฌ์™€ ๋ฒกํ„ฐ ์œ ์‚ฌ๋„๋ฅผ ๊ธฐ์ค€์œผ๋กœ ์ ์ ˆํ•œ ์ •๋ณด๋ฅผ ์ฐพ์•„๋‚ธ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐฉ์‹์€ ํ”ํžˆ ๋ฒกํ„ฐ ๊ธฐ๋ฐ˜์˜ RAG๋ผ๊ณ  ๋ถˆ๋ฆฐ๋‹ค.

 

๊ทธ๋Ÿฌ๋‚˜ RAG ๋ฐฉ์‹๋„ ์™„๋ฒฝํ•˜์ง„ ์•Š๋‹ค. ๋งŒ์ผ ์—ฌ๋Ÿฌ ๊ฐœ์˜ ๋ฌธ์„œ๊ฐ€ ์ฃผ์–ด์กŒ์„ ๋•Œ, RAG๋Š” ๋ฌธ์„œ ๊ฐ„์˜ ๋งฅ๋ฝ์ด๋‚˜ ๊ด€๊ณ„์„ฑ์„ ์ถฉ๋ถ„ํžˆ ๊ณ ๋ คํ•˜์ง€ ๋ชปํ•œ๋‹ค. ๋˜ํ•œ ์„œ๋กœ ๋‹ค๋ฅธ ๋„๋ฉ”์ธ์ด ์žˆ์„ ๋•Œ, ๋‘ ๋„๋ฉ”์ธ์„ ํ†ตํ•ฉํ•œ ๊นŠ์€ ์ธ์‚ฌ์ดํŠธ๋ฅผ ์–ป๊ธฐ๋Š” ์–ด๋ ต๋‹ค. ๋˜ํ•œ ์—ฌ์ „ํžˆ Hallucination์ด ๋ฐœ์ƒํ•œ๋‹ค.

 

์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ์ œ์•ˆ๋œ ๊ฒƒ์ด GraphRAG์ด๋‹ค. GraphRAG๋Š” ๋งˆ์ดํฌ๋กœ์†Œํ”„ํŠธ์—์„œ ์ƒˆ๋กญ๊ฒŒ ์ œ์•ˆํ•œ ๋ชจ๋ธ๋กœ, ๋ฌธ์„œ ๊ฐ„์˜ ๊ด€๊ณ„๋ฅผ ๊ทธ๋ž˜ํ”„(graph) ๊ตฌ์กฐ๋กœ ํ‘œํ˜„ํ•˜์—ฌ ๋ฌธ์„œ๋“ค ๊ฐ„์˜ ์—ฐ๊ฒฐ์„ฑ๊ณผ ๋งฅ๋ฝ์„ ๋ณด์กดํ•˜๋ฉฐ ์ •๋ณด๋ฅผ ํ™•์žฅํ•œ๋‹ค. 

https://medium.com/@fakrami/re-evaluation-of-knowledge-graph-completion-methods-7dfe2e981a77

 

 

๐Ÿ–‡๏ธ GraphRAG์˜ ํ•ต์‹ฌ ์•„์ด๋””์–ด

๋ฒกํ„ฐ ๊ธฐ๋ฐ˜ RAG๋Š” ์‚ฌ์šฉ์ž ์ฟผ๋ฆฌ์™€ ๊ฐ€์žฅ ์œ ์‚ฌํ•œ ๋ฌธ์„œ๋“ค์„ ๊ฐœ๋ณ„์ ์œผ๋กœ ์„ ํƒํ–ˆ๊ธฐ ๋•Œ๋ฌธ์— ๋ฌธ์„œ ๊ฐ„์˜ ๋งฅ๋ฝ์ด๋‚˜ ํ๋ฆ„์„ ๋†“์น˜๊ธฐ ์‰ฌ์› ๋‹ค. ์ด์— ๋ฐ˜ํ•ด GraphRAG๋Š” ๋ฌธ์„œ ํ•˜๋‚˜๋งŒ ๋ณด๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ ๊ทธ ๋ฌธ์„œ์™€ ์—ฐ๊ฒฐ๋œ ์ด์›ƒ ๋ฌธ์„œ๊นŒ์ง€ ํ•จ๊ป˜ ๊ณ ๋ คํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋”์šฑ ํ’๋ถ€ํ•œ ๋งฅ๋ฝ ์ •๋ณด๋ฅผ ์ˆ˜์ง‘ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด "์ด ๋ฐ์ดํ„ฐ์˜ ์ฃผ์š” ์ฃผ์ œ๋Š” ๋ฌด์—‡์ž…๋‹ˆ๊นŒ"์™€ ๊ฐ™์€ ํฌ๊ด„์ ์ธ ๊ฒ€์ƒ‰ ๋ฐ ๋‹ต๋ณ€์— ์ ํ•ฉํ•˜๋‹ค.

 

GraphRAG์—์„œ ๊ฐ ๋ฌธ์„œ๋Š” ๋…ธ๋“œ(Node)๋กœ ํ‘œํ˜„๋˜๋ฉฐ, ๋ฌธ์„œ ๊ฐ„์˜ ์—ฐ๊ฒฐ๊ด€๊ณ„๋Š” ์—ฃ์ง€(Edge)๋กœ ํ‘œํ˜„๋œ๋‹ค. ์ด๋Ÿฌํ•œ ์ง€์‹ ๊ทธ๋ž˜ํ”„๊ฐ€ ์ƒ์„ฑ๋˜๋ฉด, ์‚ฌ์šฉ์ž ์ฟผ๋ฆฌ์— ๊ฐ€์žฅ ์ ํ•ฉํ•œ anchor node๋ฅผ ๋จผ์ € ์ฐพ๊ณ , ๊ทธ ์ด์›ƒ ๋…ธ๋“œ๋“ค์„ ํ•จ๊ป˜ ์ถ”์ถœํ•จ์œผ๋กœ์จ ์ฟผ๋ฆฌ์™€ ๊ด€๋ จ๋œ subgraph๋ฅผ ํ˜•์„ฑํ•œ๋‹ค. ์ด ํ•˜์œ„ ๊ทธ๋ž˜ํ”„์—์„œ ์—ฐ๊ฒฐ๋œ ๋ฌธ์„œ๋“ค์„ ๊ธฐ๋ฐ˜์œผ๋กœ context๋ฅผ ๊ตฌ์„ฑํ•˜์—ฌ LLM์— ์ž…๋ ฅํ•˜๊ฒŒ ๋œ๋‹ค.

 

GraphRAG์˜ ์ „์ฒด ๋™์ž‘์€ ์•„๋ž˜์™€ ๊ฐ™์€ ๋‹จ๊ณ„๋กœ ๊ตฌ์„ฑ๋œ๋‹ค.

 

1. Knowledge Graph ์ƒ์„ฑ

์ „์ฒด ๋ฌธ์„œ ์ง‘ํ•ฉ์œผ๋กœ๋ถ€ํ„ฐ ์˜๋ฏธ์ /๋…ผ๋ฆฌ์ ์ธ ์—ฐ๊ฒฐ์„ ๋ฐ”ํƒ•์œผ๋กœ Knowledge Graph๋ฅผ ์ƒ์„ฑํ•œ๋‹ค. ์ด ๊ทธ๋ž˜ํ”„๋Š” ๋ฌธ์„œ๋“ค์„ ๋…ธ๋“œ๋กœ, ์—ฐ๊ฒฐ ๊ด€๊ณ„๋ฅผ ์—ฃ์ง€๋กœ ํ‘œํ˜„ํ•œ๋‹ค.

 

2. ์ฟผ๋ฆฌ์™€ anchor node ๋งคํ•‘

์‚ฌ์šฉ์ž์˜ ์ฟผ๋ฆฌ๋ฅผ ์ž…๋ ฅ ๋ฐ›์œผ๋ฉด, ์ด ์ฟผ๋ฆฌ์™€ ๊ฐ€์žฅ ๊ด€๋ จ ์žˆ๋Š” ๋ฌธ์„œ๋ฅผ ๊ทธ๋ž˜ํ”„ ์ƒ์—์„œ anchor node๋กœ ์„ ํƒํ•œ๋‹ค.

 

3. Subgraph ํ™•์žฅ

anchor node๋ฅผ ๊ธฐ์ค€์œผ๋กœ ์ด์›ƒ ๋…ธ๋“œ๋“ค์„ ํ™•์žฅํ•˜์—ฌ ํ•˜์œ„ ๊ทธ๋ž˜ํ”„๋ฅผ ์ƒ์„ฑํ•œ๋‹ค. 

 

4. Context ๊ตฌ์„ฑ ๋ฐ LLM ์ƒ์„ฑ

์ถ”์ถœ๋œ subgraph ๋‚ด์˜ ๋ฌธ์„œ๋“ค์„ ์กฐํ•ฉํ•˜์—ฌ ํ•˜๋‚˜์˜ context๋ฅผ ๊ตฌ์„ฑํ•˜๊ณ , ์ด๋ฅผ LLM์— ์ž…๋ ฅํ•˜์—ฌ ์‘๋‹ต์„ ์ƒ์„ฑํ•œ๋‹ค.

 

 

๐Ÿ–‡๏ธ GraphRAG์˜ ์žฅ์ 

GraphRAG์˜ ์žฅ์ ์€ ํฌ๊ฒŒ 3๊ฐ€์ง€๋กœ ์ •๋ฆฌํ•  ์ˆ˜ ์žˆ๋‹ค.

 

1. ๋ฌธ๋งฅ ๋ณด์กด

๋ฌธ์„œ ๊ฐ„์˜ ๊ด€๊ณ„๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ context๋ฅผ ๊ตฌ์„ฑํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์ •๋ณด์˜ ํ๋ฆ„์ด๋‚˜ ๋…ผ๋ฆฌ์  ์—ฐ๊ฒฐ์ด ์œ ์ง€๋œ๋‹ค. ์ด๋Š” ํŠนํžˆ ๊ธด ๋ฌธ์„œ๋‚˜ ๋ณต์žกํ•œ ์ฃผ์ œ์— ๋Œ€ํ•ด ์œ ์šฉํ•˜๋‹ค.

 

2. ์ •๋ณด ์—ฐ๊ฒฐ์„ฑ ๊ฐ•ํ™”

๋‹จ์ˆœํžˆ ์ฟผ๋ฆฌ์™€ ์œ ์‚ฌํ•œ ๋ฌธ์„œ๋งŒ ๋ณด๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ, ๊ด€๋ จ๋œ ์—ฌ๋Ÿฌ ๋ฌธ์„œ๋“ค์„ ํ•จ๊ป˜ ๊ณ ๋ คํ•จ์œผ๋กœ์จ ๋‹จํŽธ์ ์ธ ์ง€์‹์ด ์•„๋‹ˆ๋ผ ํ†ตํ•ฉ์ ์ด๊ณ  ์—ฐ๊ฒฐ๋œ ์ง€์‹์„ ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋‹ค.

 

3. Hallucination ์™„ํ™”

LLM์ด ์ฐธ๊ณ ํ•˜๋Š” ์ •๋ณด๊ฐ€ ๋”์šฑ ํ’๋ถ€ํ•ด์ง€๊ธฐ ๋•Œ๋ฌธ์— ๊ฒฐ๊ณผ์ ์œผ๋กœ hallucination ๋ฌธ์ œ๋ฅผ ์ค„์ด๊ณ  ์‘๋‹ต์˜ ์ •ํ™•์„ฑ์„ ๋†’์ด๋Š” ๋ฐ ๊ธฐ์—ฌํ•œ๋‹ค.

 

 

https://microsoft.github.io/graphrag/

 

Welcome - GraphRAG

Welcome to GraphRAG ๐Ÿ‘‰ Microsoft Research Blog Post ๐Ÿ‘‰ GraphRAG Accelerator ๐Ÿ‘‰ GraphRAG Arxiv Figure 1: An LLM-generated knowledge graph built using GPT-4 Turbo. GraphRAG is a structured, hierarchical approach to Retrieval Augmented Generation (RAG),

microsoft.github.io

https://arxiv.org/pdf/2404.16130

 

'AI > Trend Review' ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๋‹ค๋ฅธ ๊ธ€

Model Context Protocol(MCP)๋ž€ ๋ฌด์—‡์ผ๊นŒ  (0) 2025.03.27
[DeepSeek]  (0) 2025.03.10
[Google AI blog] Federated Learning: Collaborative Machine Learning without Centralized Training Data  (0) 2022.03.18

BELATED ARTICLES

more